How We Hire Writers

custom writing

All applicants go through a series of tests that check their level of English and knowledge of formatting styles. The applicant is also required to present a sample of writing to the Evaluation Department. If you wish to find out more about the procedure, check out the whole process.

How We Ensure Quality

Our Quality Control Department checks every single order for formatting, style, word usage, and authenticity. This lets us deliver certified assignment assistance that has no Internet rivals.

Any topic (writer’s choice)

The Hepatitis. arff Data set contains information about patients affected by Hepatitis. The task is to generate a classification model to predict Hepatitis histology: Yes/No.

Submit a report based on the answers for the following questions:

a)    Select a suitable decision tree model for predicting Histology.
–    Which model evaluation method did you use (CW, H-O)? Provide an overview of this model, why was it preferred? 
–    Interpret the classification outputs: the tree topology, the accuracy rates.   

b)    Provide a detailed description of the classification model:
–    The tree induction algorithm
–    The attributes selection criteria.
–    The pruning method

c)    Vary the model parameters and discuss the impact on the classification results:
–    Set the REP parameter (Reduced Error Pruning) to TRUE. Explain this tree pruning method. What impact has it made on the outputs, why?
–    Set the parameter unpruned to TRUE, Report and explain any change in the accuracy of results and in the tree structure.
–    Change the confidence factor to 15%, report the impact on the classification outputs, explaining the causes of change.

d)    Visualise the tree and Generate a set of rules along the subtree path: Varices – Ascites Spiders Bilirubin Sex Class No. If you were to generate association rules from the tree how could you reduce the number of rules (hint: speculate about Support and Confidence)?

e)    Perform predictions using two other classification models of your choice: e.g. ANN, SVM, Ensemble learner. Report on the accuracy metrics, discuss the superiority/inferiority of these models performance compared to the decision tree.

f)    Create ROC and Lift charts and interpret them.

You can leave a response, or trackback from your own site.

Leave a Reply

Powered by WordPress | Designed by: Premium WordPress Themes | Thanks to Themes Gallery, Bromoney and Wordpress Themes